

	Final Report
V	Revised Report

Report Date: 03-Aug-17 12:08

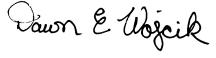
Laboratory Report SC37118

Gulf Oil L.P. 281 Eastern Avenue Chelsea, MA 02150 Attn: Andrew P. Adams

Project: Gulf Terminal - Chelsea, MA

Project #: Gulf Chelsea

I attest that the information contained within the report has been reviewed for accuracy and checked against the quality control requirements for each method. These results relate only to the sample(s) as received.


All applicable NELAC requirements have been met.

Massachusetts # M-MA138/MA1110 Connecticut # PH-0777 Florida # E87936 Maine # MA138 New Hampshire # 2972/2538 New Jersey # MA011 New York # 11393 Pennsylvania # 68-04426/68-02924 Rhode Island # LAO00348 USDA # P330-15-00375 Vermont # VT-11393

Authorized by:

Dawn Wojcik Laboratory Director

Eurofins Spectrum Analytical holds primary certification in the State of Massachusetts for the analytes as indicated with an X in the "Cert." column within this report. Please note that the State of Massachusetts does not offer certification for all analytes. Please refer to our website for specific certification holdings in each state.

Please note that this report contains 11 pages of analytical data plus Chain of Custody document(s). When the Laboratory Report is indicated as revised, this report supersedes any previously dated reports for the laboratory ID(s) referenced above. Where this report identifies subcontracted analyses, copies of the subcontractor's test report are available upon request. This report may not be reproduced, except in full, without written approval from Eurofins Spectrum Analytical, Inc.

Eurofins Spectrum Analytical, Inc. is a NELAC accredited laboratory organization and meets NELAC testing standards. Use of the NELAC logo however does not insure that Eurofins Spectrum Analytical, Inc. is currently accredited for the specific method or analyte indicated. Please refer to our Quality'web page at www.spectrum-analytical.com for a full listing of our current certifications and fields of accreditation. States in which Eurofins Spectrum Analytical, Inc. holds NELAC certification are New York, New Hampshire, New Jersey, Pennsylvania and Florida. All analytical work for Volatile Organic and Air analysis are transferred to and conducted at our 830 Silver Street location (PA-68-04426).

Please contact the Laboratory or Technical Director at 800-789-9115 with any questions regarding the data contained in this laboratory report.

Sample Summary

Work Order: SC37118

Project: Gulf Terminal - Chelsea, MA

Project Number: Gulf Chelsea

Laboratory IDClient Sample IDMatrixDate SampledDate ReceivedSC37118-01Outfall 003Surface Water13-Jul-17 09:1518-Jul-17 17:17

03-Aug-17 12:08 Page 2 of 11

CASE NARRATIVE:

Data has been reported to the RDL. This report excludes estimated concentrations detected below the RDL and above the MDL (J-Flag).

All non-detects and all results below the reporting limit are reported as "<" (less than) the reporting limit in this report.

The samples were received 2.1 degrees Celsius, please refer to the Chain of Custody for details specific to temperature upon receipt. An infrared thermometer with a tolerance of +/- 1.0 degrees Celsius was used immediately upon receipt of the samples.

If a Matrix Spike (MS), Matrix Spike Duplicate (MSD) or Duplicate (DUP) was not requested on the Chain of Custody, method criteria may have been fulfilled with a source sample not of this Sample Delivery Group.

Analyses for Total Hardness, pH, and Total Residual Chlorine fall under the state of Pennsylvania code Chapter 252.6 accreditation by rule.

August 3, 2017 Report Revision Case Narrative:

This report has been revised to update the analyte list for 8270 not previously reported.

See below for any non-conformances and issues relating to quality control samples and/or sample analysis/matrix.

SW846 8260C

Calibration:

1707018

Analyte quantified by quadratic equation type calibration.

Naphthalene

This affected the following samples:

1712490-BLK1

1712490-BS1

1712490-BSD1

Outfall 003

S706141-ICV1

S706463-CCV1

SW846 8270D SIM

Calibration:

1704025

Analyte quantified by quadratic equation type calibration.

Benzo (a) pyrene

Benzo (e) pyrene-d12

This affected the following samples:

1712432-BLK2

1712432-BS2

1712432-BSD2

Outfall 003

S703654-ICV1

S706689-CCV1

This laboratory report is not valid without an authorized signature on the cover page.

Sample Acceptance Check Form

Client:

Gulf Oil L.P.

Project:	Gulf Terminal - Chelsea, MA / Gulf Chelsea			
Work Order:	SC37118			
Sample(s) received on:	7/18/2017			
The following outlines th	ne condition of samples for the attached Chain of Custody upon receipt.			
		Yes	<u>No</u>	<u>N/A</u>
Were custody se	als present?		✓	
Were custody se	als intact?			\checkmark
Were samples re	ceived at a temperature of \leq 6°C?	✓		
Were samples re	frigerated upon transfer to laboratory representative?	✓		
Were sample con	ntainers received intact?	\checkmark		
	operly labeled (labels affixed to sample containers and include sample ID, site project number and the collection date)?	\checkmark		
Were samples ac	companied by a Chain of Custody document?	✓		
include sample I	ustody document include proper, full, and complete documentation, which shall D, site location, and/or project number, date and time of collection, collector's name, e, sample matrix and any special remarks concerning the sample?	V		
Did sample cont	ainer labels agree with Chain of Custody document?	\checkmark		
Were samples re	ceived within method-specific holding times?	\overline{V}	П	П

03-Aug-17 12:08 Page 4 of 11

Summary of Hits

Client ID: Outfall 003 Lab ID: SC37118-01

Parameter	Result	Flag	Reporting Limit	Units	Analytical Method
Total Suspended Solids	91.7		1.7	mg/l	SM2540D (11)

Please note that because there are no reporting limits associated with hazardous waste characterizations or micro analyses, this summary does not include hits from these analyses if included in this work order.

This laboratory report is not valid without an authorized signature on the cover page.

Sample Id Outfall 00 SC37118-				Client P			<u>Matrix</u> Surface Wa	-	ection Date 3-Jul-17 09			eceived -Jul-17	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Volatile O	rganic Compounds												
	organic Aromatics by SW846 by method SW846 5030 W												
71-43-2	Benzene	< 1.0		μg/l	1.0	0.3	1	SW846 8260C	20-Jul-17	20-Jul-17	GMA	1712490	
91-20-3	Naphthalene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	
Surrogate	recoveries:												
460-00-4	4-Bromofluorobenzene	102			70-13	80 %		"	"	"	"	"	
2037-26-5	Toluene-d8	101			70-13	80 %		"	u u	"	"	"	
17060-07-0	1,2-Dichloroethane-d4	94			70-13	80 %		"	"	"	"	"	
1868-53-7	Dibromofluoromethane	103			70-13	80 %		"	"	"	"	"	
Semivolati	ile Organic Compounds by G	GCMS											
SVOCs b	<u>y SIM</u>												
Prepared	by method SW846 3510C												
50-32-8	Benzo (a) pyrene	< 0.049		μg/l	0.049	0.020	1	SW846 8270D SIM	20-Jul-17	25-Jul-17	MSL	1712432	
91-20-3	Naphthalene	< 0.049		μg/l	0.049	0.021	1	"	"	"	"	"	
Surrogate	recoveries:												
205440-82-0	Benzo (e) pyrene-d12	58			30-13	80 %		"	"	"	"	"	
	le Petroleum Hydrocarbons by method SW846 3510C												
	Oil & Grease	< 1.00	OG	mg/l	1.00	0.915	1	EPA 1664B	27-Jul-17	28-Jul-17	KK	1712912	Х
General C	Chemistry Parameters												
	рН	6.20	рН	pH Units			1	ASTM D 1293-99B	19-Jul-17 09:55	20-Jul-17 15:13	TN	1712421	Х
	Total Suspended Solids	91.7		mg/l	1.7	0.7	1	SM2540D (11)	19-Jul-17	20-Jul-17	CMB	1712373	Х

03-Aug-17 12:08 Page 6 of 11

Volatile Organic Compounds - Quality Control

nalyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limi
W846 8260C										
atch 1712490 - SW846 5030 Water MS										
Blank (1712490-BLK1)					Pre	epared & Ar	nalyzed: 20-	-Jul-17		
Benzene	< 1.0		μg/l	1.0						
Naphthalene	< 1.0		μg/l	1.0						
Surrogate: 4-Bromofluorobenzene	50.2		μg/l		50.0		100	70-130		
Surrogate: Toluene-d8	50.8		μg/l		50.0		102	70-130		
Surrogate: 1,2-Dichloroethane-d4	46.6		μg/l		50.0		93	70-130		
Surrogate: Dibromofluoromethane	51.2		μg/l		50.0		102	70-130		
LCS (1712490-BS1)					Pre	epared & Ar	nalyzed: 20-	-Jul-17		
Benzene	23.3		μg/l		20.0		116	70-130		
Naphthalene	20.6		μg/l		20.0		103	70-130		
Surrogate: 4-Bromofluorobenzene	51.0		μg/l		50.0		102	70-130		
Surrogate: Toluene-d8	51.2		μg/l		50.0		102	70-130		
Surrogate: 1,2-Dichloroethane-d4	47.7		μg/l		50.0		95	70-130		
Surrogate: Dibromofluoromethane	50.6		μg/l		50.0		101	70-130		
LCS Dup (1712490-BSD1)					Pre	epared & Ar	nalyzed: 20-	-Jul-17		
Benzene	22.2		μg/l		20.0		111	70-130	5	20
Naphthalene	20.6		μg/l		20.0		103	70-130	0.1	20
Surrogate: 4-Bromofluorobenzene	50.9		μg/l		50.0		102	70-130		
Surrogate: Toluene-d8	50.8		μg/l		50.0		102	70-130		
Surrogate: 1,2-Dichloroethane-d4	47.0		μg/l		50.0		94	70-130		
Surrogate: Dibromofluoromethane	50.2		μg/l		50.0		100	70-130		

Semivolatile Organic Compounds by GCMS - Quality Control

- T T-									
Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
				<u>Pre</u>	epared: 20-	Jul-17 Ana	lyzed: 25-Jul	<u>-17</u>	
< 0.051		μg/l	0.051						
< 0.051		μg/l	0.051						
0.469		μg/l		1.02		46	30-130		
				<u>Pre</u>	epared: 20-	Jul-17 Ana	lyzed: 25-Jul	<u>-17</u>	
0.381		μg/l	0.051	0.505		75	40-140		
0.244		μg/l	0.051	0.505		48	40-140		
0.566		μg/l		1.01		56	30-130		
				Pre	epared: 20-	Jul-17 Ana	lyzed: 25-Jul	<u>-17</u>	
0.383		μg/l	0.051	0.510		75	40-140	0.5	20
0.247		μg/l	0.051	0.510		48	40-140	1	20
0.561		μg/l		1.02		55	30-130		
-	< 0.051 0.469 0.381 0.244 0.566 0.383 0.247	< 0.051 0.469 0.381 0.244 0.566 0.383 0.247	< 0.051 µg/l 0.469 µg/l 0.381 µg/l 0.244 µg/l 0.566 µg/l 0.383 µg/l 0.247 µg/l	< 0.051 μg/l 0.051 0.469 μg/l 0.381 μg/l 0.051 0.244 μg/l 0.051 0.566 μg/l 0.383 μg/l 0.051 0.247 μg/l 0.051	< 0.051 μg/l 0.051 < 0.051 μg/l 0.051 0.469 μg/l 1.02 Pre 0.381 μg/l 0.051 0.505 0.244 μg/l 0.051 0.505 0.566 μg/l 1.01 Pre 0.383 μg/l 0.051 0.510 0.247 μg/l 0.051 0.510	 < 0.051	 < 0.051 μg/l 0.051 < 0.051 μg/l 0.051 0.469 μg/l 1.02 46 Prepared: 20-Jul-17 Ana 1.02 0.381 μg/l 0.051 0.505 75 0.244 μg/l 0.051 0.505 48 0.566 μg/l 1.01 56 Prepared: 20-Jul-17 Ana 1.03 0.383 μg/l 0.051 0.510 75 0.247 μg/l 0.051 0.510 48 	 < 0.051 μg/l 0.051 < 0.051 μg/l 0.051 0.469 μg/l 1.02 46 30-130	 < 0.051 μg/l 0.469 μg/l 1.02 46 30-130 Prepared: 20-Jul-17 Analyzed: 25-Jul-17 0.381 μg/l 0.051 0.505 75 40-140 0.244 μg/l 0.051 0.505 48 40-140 0.566 μg/l 1.01 56 30-130 Prepared: 20-Jul-17 Analyzed: 25-Jul-17 0.383 μg/l 0.051 0.510 75 40-140 0.5 0.247 μg/l 0.051 0.510 48 40-140 1

Extractable Petroleum Hydrocarbons - Quality Control

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
EPA 1664B										
Batch 1712912 - SW846 3510C										
Blank (1712912-BLK1)					Pre	epared: 27-Ju	ul-17 Ana	lyzed: 28-Ju	<u>l-17</u>	
Oil & Grease	< 1.00		mg/l	1.00						
LCS (1712912-BS1)					Pre	epared: 27-Ju	ul-17 Ana	lyzed: 28-Ju	<u>l-17</u>	
Oil & Grease	38.9		mg/l	1.00	39.7		98	78-114		

General Chemistry Parameters - Quality Control

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
ASTM D 1293-99B										
Batch 1712421 - General Preparation										
<u>Duplicate (1712421-DUP1)</u>			Source: SC	37118-01	Pre	epared: 19-	Jul-17 Ana	alyzed: 20-Jul	<u>-17</u>	
рН	6.20		pH Units			6.20			0	5
Reference (1712421-SRM1)					Pre	epared: 19-	Jul-17 Ana	alyzed: 20-Jul	<u>-17</u>	
рН	5.98		pH Units		6.00		100	97.5-102. 5		
Reference (1712421-SRM2)					Pre	epared: 19-	Jul-17 Ana	alyzed: 20-Jul	<u>-17</u>	
рН	6.02		pH Units		6.00		100	97.5-102. 5		
SM2540D (11)										
Batch 1712373 - General Preparation										
Blank (1712373-BLK1)					Pre	epared: 19-	Jul-17 Ana	alyzed: 20-Jul	<u>-17</u>	
Total Suspended Solids	< 0.5		mg/l	0.5						
LCS (1712373-BS1)					Pre	epared: 19-	Jul-17 Ana	alyzed: 20-Jul	<u>-17</u>	
Total Suspended Solids	98.0		mg/l	10.0	100		98	90-110		

Notes and Definitions

dry Sample results reported on a dry weight basis

NR Not Reported

RPD Relative Percent Difference

OG The required Matrix Spike and Matrix Spike Duplicate (MS/MSD) for Oil & Grease method 1664B can only be analyzed

when the client has submitted sufficient sample volume. An extra liter per MS/MSD is required to fulfill the method QC criteria. Please refer to Chain of Custody and QC Summary (MS/MSD) of the Laboratory Report to verify ample sample

volume was submitted to fulfill the requirement.

pH The method for pH does not stipulate a specific holding time other than to state that the samples should be analyzed as

soon as possible. For aqueous samples the 40 CFR 136 specifies a holding time of 15 minutes from sampling to analysis. Therefore all aqueous pH samples not analyzed in the field are considered out of hold time at the time of sample receipt.

All soil samples are analyzed as soon as possible after sample receipt.

<u>Laboratory Control Sample (LCS)</u>: A known matrix spiked with compound(s) representative of the target analytes, which is used to document laboratory performance.

Matrix Duplicate: An intra-laboratory split sample which is used to document the precision of a method in a given sample matrix.

<u>Matrix Spike</u>: An aliquot of a sample spiked with a known concentration of target analyte(s). The spiking occurs prior to sample preparation and analysis. A matrix spike is used to document the bias of a method in a given sample matrix.

<u>Method Blank</u>: An analyte-free matrix to which all reagents are added in the same volumes or proportions as used in sample processing. The method blank should be carried through the complete sample preparation and analytical procedure. The method blank is used to document contamination resulting from the analytical process.

Method Detection Limit (MDL): The minimum concentration of a substance that can be measured and reported with 99% confidence that the analyte concentration is greater than zero and is determined from analysis of a sample in a given matrix type containing the analyte.

Reportable Detection Limit (RDL): The lowest concentration that can be reliably achieved within specified limits of precision and accuracy during routine laboratory operating conditions. For many analytes the RDL analyte concentration is selected as the lowest non-zero standard in the calibration curve. While the RDL is approximately 5 to 10 times the MDL, the RDL for each sample takes into account the sample volume/weight, extract/digestate volume, cleanup procedures and, if applicable, dry weight correction. Sample RDLs are highly matrix-dependent.

<u>Surrogate</u>: An organic compound which is similar to the target analyte(s) in chemical composition and behavior in the analytical process, but which is not normally found in environmental samples. These compounds are spiked into all blanks, standards, and samples prior to analysis. Percent recoveries are calculated for each surrogate.

<u>Continuing Calibration Verification:</u> The calibration relationship established during the initial calibration must be verified at periodic intervals. Concentrations, intervals, and criteria are method specific.

03-Aug-17 12:08 Page 11 of 11

Special Handling	X .
	50 118 25

ie below: OA/OC Reporting Notes:	List Preservative Code below:	5=NaOH 6=Ascorbic Acid	1=N ₃ 2S2O ₃ , 2=HCl 3=H ₂ SO ₄ 4=HNO ₃ , 5=N ₃ OH 6=Ascorbic Acid	R=Field Filtered
		P.O No.: Quote/RQN:	Andrew Adams	Project Mgr:
WICHOLAS DIETZ CAM	Sampler(s):		617.884.5980	Telephone #:
281 Eastern Ave, Chelsea State: MA	Location:	Wellesley, MA 02481-3705	Chelsea, MA 02150	Chelsea
Gui Gligisca Ferrifica	Sile Name	80 William St, Suite 400	281 Eastern Ave	281 Eas
Gulf Chelega Terminal	a to the second	Gulf Oil LP	Lp	Gulf Oil LP
Gulf Chelsea	Project No:	Invoice To: Christopher Gill	Adams	Report To: Andrew Adams
Min. 24-hr notification needed for rushes Samples disposed after 60 days unless otherwise instructed.		Page1	SPECTRUM ANALYTICAL, INC. Featuring HANIBAL TECHNOLOGY	SPECTRI
☐ Standard TAT - 7 to 10 business days ☐ Rush TAT - Date Needed:	ORD	CHAIN OF CUSTODY RECOR		

☐ Di VOA Frozen ☐ Soil Jar Frozen	☐ Ambient ☐ Iced	☐ Ambient ☐	<u></u>	IR ID#										
☐ Present ☐ Intact ☐ Broken	Custody Seals:	Candition upon receipt	Currected C	· Pi				×	4		(C		
			Correction Factor	Corre	17	8/17	7/		7	68	<u> </u>	780		
@gulfoil.com	aadams@gulfoil.com, cgill@gulfoil.com	☑ E-mail to:	1.	Observation	111	ý.	4	West	X	9	_	1		S
		☐ EDD format:	tp °C		Time:	Pares /7	7 #		d by:	Received by:		(A.1)	Relinquishe	
						2)								•
			4											
						r								
benzo(a)pyrene 0.1 µg/L										,				
naphthalene 5 µg/L		×					WS	ە م	0915	21/12	ú	Outfall 003	K	
benzene 2 µg/L		×				ω	WS	G	0915	21/4	ω .	Outfall 003		
Required MLs:			×				SW	ر و	0915	7/13	ن	Outfall 003		
		,		×	_		WS	ر م	0915	21/13	ω	Outfall 003	कि द	ر) دن ار
	Check if	naphthale PAH (ben naphthale	O&G VOCs (be	TSS, pH	# of Clear	# of VOA # of Amb	Matrix	Type	te Time:	C=Compsite Date:).	ab Sample ID :	G= Grab	Lab ID:
. □ DQA* □ ASP B*. □ NJ Reduced*: □ NJ Full*.	chlorin	ne) z(a) pyre	nzene &		**********	No. 1100	. 1		4	X3=	X2=			×11=
	ated	e ne &							oil Gas	ent Air SG=Soil Gas	A =Indoor/Ambient Air	SL=Sludge A=	SO=Soil	0=0il
MA DEP MCP CAM Report? Yes		Analysis			Containers	Co		ater	ww=Waste Water	SW=Surface Water W		GW=Groundwater		DW=Dinking Water
dda fran caffrais, minnimm		2 11	3	11										
* additional charges may appoly		-	-	Ī				1/=	none	1	ater 10=H3PO.	7=CH3OH 8=NaHSO ₄ 9=Defonized Water $10=H_3PO_4$	8=NaHSO4	7=CH3OH

Batch Summary

1712373

General Chemistry Parameters

1712373-BLK1 1712373-BS1

SC37118-01 (Outfall 003)

1712421

General Chemistry Parameters

1712421-DUP1 1712421-SRM1 1712421-SRM2

SC37118-01 (Outfall 003)

1712432

Semivolatile Organic Compounds by GCMS

1712432-BLK2 1712432-BS2 1712432-BSD2

SC37118-01 (Outfall 003)

1712490

Volatile Organic Compounds

1712490-BLK1 1712490-BS1 1712490-BSD1 \$C27118_01_(Outfall)

SC37118-01 (Outfall 003)

<u>1712912</u>

Extractable Petroleum Hydrocarbons

1712912-BLK1 1712912-BS1

SC37118-01 (Outfall 003)

S703654

Semivolatile Organic Compounds by GCMS

S703654-CAL1

S703654-CAL2

S703654-CAL3

S703654-CAL4

S703654-CAL5

S703654-CAL6

S703654-CAL7

S703654-CAL8

5/03654-CAL8

S703654-CAL9

S703654-CALA S703654-CALB

S703654-ICV1

S703654-LCV1

S703654-LCV2

S703654-TUN1

S706141

Volatile Organic Compounds

\$706141-CAL1 \$706141-CAL2 \$706141-CAL3 \$706141-CAL4 \$706141-CAL5 \$706141-CAL6 \$706141-CAL7 \$706141-CAL8 \$706141-CAL8 \$706141-CALB \$706141-CALB \$706141-LCV1 \$706141-LCV1 \$706141-LCV1 \$706141-LCV2 \$706141-TUN1

S706463

Volatile Organic Compounds

S706463-CCV1 S706463-TUN1

S706689

Semivolatile Organic Compounds by GCMS

S706689-CCV1 S706689-TUN1